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Abstract—A special boundaryintegral equationis used to analyze steady heat conduction from aninfinite row
of circular holes located below the surface of a half-space or along the midplane of a uniform slab. Numerical
results show that standard handbook approximations for the total heat flux from any one hole can give sizable
errors in both problems, even for modest values of the problem parameters. An alternative approximation
proposed recently for the half-space problem is shown to offer a substantial improvement in accuracy.

NOMENCLATURE
a radius of the hole
d depth of holes in half-space or slab
thickness

Jo:J1mJ2m special functions defined by
equation (8) (m = 1,2,..)

g special function defined by equation (5}

Jo special function defined by equation (10)

G defined by equation (4)

1 spacing between holes

90sd1md2m coefficients in the harmonic
expansion of the boundary flux on the hole
m=12.)

%,0% region and its outer boundary, respectively

X,y pointsin the region
Greek symbols
0 polar angle centered at &
& center of the hole
¢ temperature
@6 P1m P2, coefficients in the harmonic

expansion of the boundary temperature on
the hole (m = 1,2,..))

1. INTRODUCTION

IN A RECENT paper, Barone and Caulk [1] proposed a
system of special boundary integral equations for
solving Laplace’s equation in 2-dimensional regions
with circular holes. In this approach, boundary
quantities are expanded in circular harmonics on the
holes, and each unknown coefficient is determined by a
special boundary integral equation. As more har-
monics are retained in the solution representation on
the hole boundary, a natural sequence of approximate
equations emerges from the general system. These are
called the mth-order equations, where m refers to the
number of non-trivial harmonics in the solution
representation on the hole. When the region has only
one hole, it is possible to construct a single exact
equation which retains all the harmonics on the hole
butinvolves only thesolution on the outer boundary [2,
3]. This is called the single-hole equation. The effect of

the hole in this equation is carried through a special
kernel function that depends on both the location and
radius of the hole. The results on the hole can be
recovered from the solution to thisequation by a simple
quadrature over the outer boundary.

Approximate expressions are available in standard
handbooks [4] for the total heat flux from any one of an
infinite number of identical holes which are equally
spaced a fixed distance below the surface of a half-space
or along the midplane of a uniform slab. All the
boundaries are isothermal, with the same temperature
on each hole and equal temperatures on both surfaces
of the slab. For the half-space, Barone and Caulk [1]
showed that the handbook approximation is identical
to the solution of the zeroth-order integral equations
discussed above. Based on this result, they offered the
analytical solution of the first-order equations as an
improvement over the handbook approximation.
Although these two expressions can give significantly
different results over a moderate range of the problem
parameters, no estimate was given in ref. [1] for the
relative error associated with either approximation.

Inthe present paper, the periodicity of the solutionin
both the half-space and the slab is exploited to solve
both problems numerically using the exact single-hole
equation. These results are then used to evaluate the
accuracy of the approximate expressions discussed
above. It turns out that the handbook expressions for
both problems can produce errors greater than 209,
even for modest values of the problem parameters. On
the other hand, the error associated with the new
approximation for the half-space [1] is always less than
1% aslongas the centers of the holes are more than one
diameter from the surface and two diameters apart.

Numerical results are also given for the case when
one surface of the slab is completely insulated. No
simpleapproximateexpressionisavailable for this case.

2. BASIC INTEGRAL EQUATIONS

Consider a two-dimensional region £ containing a
circular hole of radius a, centered at x = &. Let ¢ be the
temperature in # and let ¢ and its outward normal
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Fi1G. 1. Geometry and notation.

derivative on the hole be represented by
¢ =do+ Z (P1r sin mO+ ¢y, cos m), (1)

9

1
[+ ¢]
Fr Z G1m Sin MmO +4q,,, cos mo)  (2)

where ¢o, dims dor dam A =1, 2; m=1,2,..)) are
constants and 0 is the polar angle centered at ¢,
measured relative to the x,-axis (Fig. 1).

When temperature is specified on the boundary of
the hole, one canshow [3] that the entire solution inside
2 can be determined by solving the integral equation

g 04
G(y)+Je3 (‘ﬁE? —9g E) ds—¢, logly—¢i/log a

3 T 14y, sin mO(y)+ b cos mOy)] =0
m=1 Iy gl
)

where 02 is the outer boundary of & and

2 [30)
G0) {%qs(y)

Although the integral equation (3) involves only the
solution on the outer boundary, the effect of the holes is
represented without approximation in the kernel
function

when ye4,

4
when yedA. ®

1
gxy, 8= 5 {loglx—yl
¥is

+loglx—¢[ logly—¢| log a

® a®"Im }
__am 6(y) — 6(x)] b-
Lk gry—gp o Mo~ 0] -

The solution of equation (3) can be found by any one of
the standard numerical methods for boundary integral
equations [5]. This will determine the temperature and
flux everywhere on 8%. The individual coefficients in
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theexpansion (2)for the unknown boundary flux on the
hole can then be recovered by quadrature from

gy @
w=greaftot | (42-a)al  ©

1 ) 0
Qam = — r"¢lm+2 ¢&"_ - glrn_¢ ds (7)
a R on on

where

1
go= —5- log|x—&l,
i3

_a™ cos mb
9o Dnix g

a™ sin m

=g o

Jim =

Alternatively, the entire solution on the hole boundary
can be recovered at once from

a%(()) = —¢ofloga+ ¥, m(py,sinmd+¢,,cosmo)
m=1
g0 _ , 09
[ % -a)s o
where
9golx,8) = {log [x —¢&|/log a

bl

2a™
* 2=
Perhaps equation (6) is the most practical result since
the total flux from the hole is just 2nag,.

Since the above procedure reduces the problem to a
solution of an integral equation on the outer boundary
alone, there is no need to discretize the solution on the
boundary of the hole. Besides being more convenient,
this also avoids certain conditioning problems, which
are discussed in refs. [1, 2]. A corresponding set of
integral equations ¢an also be determined when flux is
specified on the hole. These are recorded in ref. [2] but
are not required for the examples considered in this

paper.

cos m[O(x)— 0]} (10

3. AN INFINITE ROW OF HOLES IN A HALF-SPACE

As a first example, consider an infinite row of
identical holesin a half-space (Fig. 2). Let abe theradius

o "’@
| £—

FiG. 2. A row of holes in a half-space.
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FIG. 3. Region for solving the single-hole equation (3) in the
half-space problem.

of the holes, I the distance between their centers, and d
their depth below the surface. The boundary of each
hole has the same constant temperature ¢, and the
temperature on the surface of the half-space is taken to
bezero. The standard handbook approximation for the
total flux from any one hole in this problem is [4]

dollagg) = og| L sinh (2nd/r>]. ay
The same result was also obtained from the solution of
thezeroth-orderequationsinref. [1] which assumethat
the heat flux is constant on the hole. The corresponding
expression derived from the solution of the first-order
equations, which retain up to the first harmonic in the
boundary flux on the hole, is [1]

l
$ollags) = log [E sinh (hd/l)}
cosh? (2nd/l)

1- 1+ P sinh? (2xrd/l)
3 n2a?

+

(12

In this section, we evaluate the accuracy of both
approximations by comparing them to numerical
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solutions of the exact integral equation (3). Based on
previous experience with this equation [3], numerical
errors should be considerably less than 19,

Since the solution is the same on every hole in the
half-space, it suffices to solve equation (3) on the vertical
stripshown in Fig. 3. The heat flux is zero on the sides of
the strip and the semi-infinite region was closed at a
large distance from the hole by another surface of zero
flux. A distance of L = 10 x max (2d, [y wasfound to be
sufficient for practical convergence of the numerical
solution. The boundary of the region was discretized as
follows: segments AB, BC, and CD were each divided
into 25 equal intervals, segments DE and FA into 50
equal intervals each, and segment EF into 5 equal
intervals. The solution was assumed to be constant on
eachoftheseintervals, and theintegralequation (3) was
solved using a standard quadrature method [5]. The
value of g, was recovered subsequently from equation
(6). Results of this calculation are givenin Table 1 fora
range of d/a and I/a. The relative error of both equation
(11) and equation (12) was computed with respect to
these values and plotted in Figs. 4 and 5, respectively.

The handbook approximation (11) produces a
sizable error unless the holes are widely spaced and/or
moderately far from the surface (Fig. 4). On the other
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F1G. 4. Relative error (in percent) associated with the
handbook approximation (11) for a row of holes in a half-
space.
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Table 1. Valuesofag,/¢, computed from equation (6) and numerical solutions ofequation (3)foran
infinite row of holes in a half-space

Ifa

dfa 2.5 30 4.0 50 6.0 8.0 10.0 120

125 09884  1.064 1.169 1.238 1.285 1.342 1.373 1.391

1.5 0.5969  0.6611 0.7565 0.8225 0.8693 09287 09626 09832
2.0 0.3401  0.3878 04657 0.5248 0.5698  0.6309 0.6681  0.6918
2.5 02385  0.2758 03402 03923 04341 04944 05334 0.5594
30 0.1838  0.2142 02685 03144 03527 04108 04505 04778
4.0 0.1262  0.1482 0.1890 02254 02574 03905 03482 0.3767
50 0.09625 0.1135 0.1460  0.1758 02029 0.2489 0.2852  0.3134
6.0 0.07800 0.09205 0.1190. 0.1442 01675 02083 02418 02690
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F1G.5. Relativeerror (in percent) associated with thenew result
(12) for a row of holes in a half-space.

hand, equation (12) gives an exceptionally accurate
result even when the holes are closely spaced or very
near the surface (Fig. 5).

NoteinFig. 5thattheerrorinequation(12)decreases
with increasing depth until d/a > 4, and then begins to
increase slightly. This is probably because the second
harmonic in the representation for the heat flux on the
hole boundary [which is neglected in equation (12)]
becomes increasingly important as the depth increases
relative to the hole spacing.

4. AN INFINITE ROW OF HOLES IN A SLAB

Next consider an infinite row of identical holes,
equally spaced in the center of a uniform slab (Fig. 6).
Let a be the radius of the holes, d the thickness of the
slab, and I the distance between the centers of the holes.
The boundary of each hole has the same constant
temperature ¢, and the temperature on at least one
surface of the slab is taken to be zero. We consider two
cases for the boundary condition on the other surface:
(1) zero temperature and (2) zero heat flux.

In the first case, the standard handbook approxim-
ation for the total flux from any one hole is {4]

1
$o/(ago) = log [;I; sinh (Hd/21)]- (13)

! |

F1G. 6. A row of holes in a uniform slab. Dotted lines indicate
the region for solving the single-hole equation (3).

F1G. 7. Numerical results for a row of holes in a uniform slab
with both surfaces at the same constant temperature.

A similar expressionis not available for the second case.
References to the origin ofequation (13)in theliterature
are vague [6], and so it is difficult to determine its
implicit assumptions. Unlike equation (11), equation
(13)does not appear to be asolution of the zeroth-order
equations in ref. [1].

Numerical solutions of the exact integral equation
(3) were obtained on a single symmetric cell of the slab
(showed dotted in Fig. 6). Each of the four sides was
divided into 25 equal intervals and the solution
obtained as before. The results for both cases are
plotted in Figs. 7 and 8, and the error associated with
equation (13) is shown in Fig. 9. In the shaded area of
Fig. 7, theindicated numerical results differ byless than
5% from the approximation (13). Generally, greater
errors are encountered with equation (13) as the slab
gets thinner (Fig. 9). Rohsenow and Hartnett [4]
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Fi1G. 8. Numerical results for a row of holes in a uniform slab
with temperature constant on one surface and the other
surface insulated.
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F1G. 9. Relative error (in percent) associated with the
handbook expression (13) for a row of holes in a uniform slab.

qualify equation (13) with d/a > 2. If we impose
‘d/a > 5, the error would be limited to 10%.
The effect of insulating one surface of the slab is not
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only todecrease the total flux from each hole but also to
extend the range of influence of the spacing between the
holes. In Fig. 7, the curves of constant d/a reach an
effective asymptote when I/a > 2d/a, and so the hole
spacing becomes unimportant when l/d > 2. In Fig. 8,
this does not occur until I/d > 3.
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CONDUCTION STATIONNAIRE A PARTIR D’'UNE RANGEE DE TROUS
DANS UN DEMI-ESPACE OU UNE PLAQUE UNIFORME

Résumé—Une équation intégrale spéciale est utilisée pour analyser la conduction permanente a partir d’'une

rangée infinie de trous circulaires située sous la surface d'un demi-espace ou le long du plan médian d’une

plaque uniforme. Des résultats numériques montrent que les approximations usuelles des manuels pour le flux

thermique total 4 partir d’un trou quelconque peut donner des erreurs importantes dans les deux problémes,

méme pour des valeurs modérées des paramétres du probléme. Une approximation proposée récemment pour
le probléme du demi-espace offre une amélioration sensible de la précision.

STATIONARE WARMELEITUNG AN EINER UNENDLICH AUSGEDEHNTEN LOCHREIHE
IN EINEM HALBRAUM ODER EINER EBENEN PLATTE

Zusammenfassung—FEine spezielle Randwert-Integralgleichung wird verwendet, um die stationdre
Wirmeleitung an einer unendlich ausgedehnten Reihe von kreisférmigen Lochern, die unter der Oberflache
cines Halbraums oder in der Mittelebene einer ebenen Platte liegen, zu untersuchen. Die zahlenmiBigen
Ergebnisse zeigen, daB die iblichen in Handbiichern empfohlenen Approximationen fiir den
Gesamiwirmestrom, der von einem Loch ausgeht, in beiden Fillen zu erheblichen Fehlern fihren kénnen,
selbst fiir kleine Werte der EinfluBgré8en. Es wird gezeigt, daB eine kirzlichfiir den Halbraum vorgeschlagene
Approximations-Alternative eine wesentliche Verbesserung der Genauigkeit bietet.

CTAUHOHAPHASA TMEPEJAYA TEIUIA TEMJOMNPOBOAHOCTLIO OT BECKOHEYHOI'O
PAJA OTBEPCTHI1 B NOJNIYNPOCTPAHCTBE OLHOPOJAHON MJIHTDHI

Annotaurs—/1s anansa crauuouapuoﬁ Nnepeaayu Tema TENI0NpoBOIHOCTLIO OT beckoHeYHOT O paaa
Kpyribix OTBCpCTHﬁ. PACroOIOACHHBIX 101 MOBEPXHOCTLIO NOJIYNPOCTPAHCTBA HIH BJIO.Ib CpCJHCﬁ
ITOCKOCTH OﬂliOpOJllOﬁ I1ACTHHBI, HCNIO1530BAHO PELUCHHE CNCUHANLHOTO rpaHHYHOrO HHTErPAILHOIO
YPABHCHHSA. Yucirenusle pe3yAbTATH! MOKA3LIBAKOT, YTO pACueT CyMMApPHOro NOTOKA TEMN1a OT aodoro
H3 OTBEpCTHﬁ 110 IpeaACTABICHHbIM B CNIPABOYHHKAX OﬁmeanHﬂTblM QAMNPORKCHMAUMAM  MOKET
IIPHBECTH K 3HAYHTCIbHBIN MOIrpeiHOCTAM B 00eHX 3aJayax, Jaxe npH He0OIBUIHX  3HAYEHHAX
napaMeTpos. INoka3sano, ¥ro ANNPOKCHMHPYIOUICC COOTHOUICHHE, NHCIABHO NPELTOACHNOE 1719 3344H
OYNPOCTPAHCTBA, J1AC€T JHAYHTEIBHO 60:1¢e TOUNBIE pe3yabTaThl.





